

International SpaceWire Conference 2011

NEXTAR: Small Satellite Bus Based on SpaceWire Deterministic Implementation

10 November 2011

Hiroki Hihara
NEC TOSHIBA Space Sytems, Ltd.

Toshiaki Ogawa, Kenji Kitade NEC Corporation

NEXTAR: NEC Next-generation Star

What SpaceWire provides for small satellites are...

Small size, light weight

Modularity

NEXTAR – the Earth Observation model

- ASNARO (Advanced Satellite with New system Architecture for Observation)
 - The first model with NEXTAR bus

Item	Description
Mission - Optical sensor - Data transmission	Pan / Multi (6-bands) GSD: < 0.5m/2m (Pan/Multi) Swath: 10km X-band, 16QAM, ~ 800Mbps
Pointing	Coverage: +/- 45deg x +/-45deg (cross x along track) Agility: 1deg / sec (average)
Launch Orbit	compatible with major launchers SSO ~ 500km altitude
Mass	Bus 295 kg (incl. 45kg fuel) Mission 200 kg <total> 495 kg</total>
Power	Generation: > 1300 W (EOL) Payload: 400 W
Dimension	2.5 x 3.5 x 3.2m (in orbit)

Determinism Implementation exploiting SpW/RMAP

Determinism required for NEXTAR bus

- Every data must be delivered and collected on time.
- Re-transmission and ACK/NACK transaction are required.
- Shortening system test schedule without reducing reliability
- Integration with legacy interface
 - CAN, UART, MIL-STD-1553B, etc.
- Inherent capability in SpW/RMAP
 - RMAP
 - CRC, Status field, transaction sequence
 - SpaceWire
 - EOP and EEP
- Deterministic character is formalized in draft specification of SpaceWire-D.

Space Technology Centre
School of Computing
University of Dundee
Dundee, DD1 4HN
Scotland, UK
spacetech.computing.dundee.ac.uk

© University of Dundee 2010

Protocol Layer for Scheduling and Assured Transmission

- Documents established by JAXA and NEC
 - Telemetry/Command
 Design Criteria / SMCP
 - Annex for each project
 - SpaceWire Network Design Criteria

Results of Analysis for the SpW-D Draft Specification Takahiro Yamada (JAXA/ISAS) 18 October 2010 Fifteenth SpaceWire WG Meeting

Deterministic Implementation for NEXTAR (1/3)

Scheduling

- One second comprises
 64 time slots.
 - Each time slot corresponds to SpaceWire Time-Code.

- RMAP is used for all transactions.
- Latency is defined as the maximum delay time of an RMAP reply.

- Multiple transaction in one time slot is realized within the limitation of latency definition
 - No modification is required on SpaceWire/RMAP.

Deterministic Implementation for NEXTAR (2/3)

- Communication Services
 - Implicit services
 - Re-transmission
 - Re-transmission through alternative paths
 - Explicit services
 - Distribution Services
 - Collection Services
 - Polling for additional telemetry collection and command delivery request
 - Guaranteed transactions with ACK /NACK are implemented on RMAP.

Deterministic Implementation for NEXTAR (3/3)

- Services are distinguished through addresses
 - Exploiting RMAP inherent characteristics for Plug & Play capability

Road map of NEXTAR **SPRINT-A ASNARO** Standardization SDS-1 **NEC** standard bus (NEXTAR) Space Cube 2 JAXA/ISAS small satellite series METI advanced small satellite Joint collaboration study (300kg~500kg) with JAXA/ISAS 64bit MPU **Burst SRAM Development SpaceWire Micro On-orbit demonstration Satellites** $(\sim 100 \text{kg})$ (30kg~50kg) 2008~2009 2013~ 2011