

SpaceWire, a Backbone for Humanoid Robotic Systems

Mathias Nickl, **Stefan Jörg**, Thomas Bahls, Alexander Nothhelfer, Stefan Strasser

Robotic and Mechatronics Center, German Aerospace Center (DLR)

Robotics and Mechatronics Center: Competences...

Physics

Usability engineering

Folie 2 The Computing and Communication Architecture of the DLR Hand Arm System > Stefan Jörg > IROS 2011 > 27.09.2011

Robotics and Mechatronics Center: Competences... to build highly-integrated robots

Robotics and Mechatronics Center: Systems with SpaceWire

DLR Hand II 2001 (IEEE1355)

DLR Krabbler 2006

Medical Robots and Tools: Kinemedic 2005, Miro 2008, MICA 2009

DLR Hand Arm System 2010

DLR Hand Arm System - A novel humanoid design

- → 26 Degrees of Freedom
- Variable Stiffness Actuation
- → 52 Motors, 430 Sensors

DLR Hand Arm System – Hand + Wrist (19 +2 DOF)

DLR Hand Arm System – The Arm (5 DOF)

Shoulder-Elbow FSJ Mechanism [Wolf et al., ICRA 2011] Forearm Mechanism [Friedl et al., IROS 2011]

Folie 8 The Computing and Communication Architecture of the DLR Hand Arm System > Stefan Jörg > IROS 2011 > 27.09.2011

DLR Hand Arm System – Communication

DLR Hand Arm System – Rapid Prototyping

The Hierarchical Architecture - Computing nodes

in der Helmholtz-Gemeinschaft

The Hierarchical Architecture

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

The Hierarchical Architecture - Physical Interfaces

in der Helmholtz-Gemeinschaft

The Computing and Communication Architecture of the DLR Hand Arm System > Stefan Jörg > IROS 2011 > 27.09.2011

The Hierarchical Architecture - Modules

R für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

The Hierarchical Architecture - Composition

in der Helmholtz-Gemeinschaft

Folie 15 The Computing and Communication Architecture of the DLR Hand Arm System > Stefan Jörg > IROS 2011 > 27.09.2011

The Hierarchical Architecture – The HAL

Hardware Abstraction Layer

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

The Virtual Path – From Sensor to Actuator

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

Folie 17 The Computing and Communication Architecture of the DLR Hand Arm System > Stefan Jörg > IROS 2011 > 27.09.2011

The Virtual Path – From Sensor to Actuator

The Application is synchronized by the sensor hardware (*The Virtual Path* [Nickl et al. 2009])

Computation and Communication Path

The Virtual Path – From Sensor to Actuator

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 19 The Computing and Communication Architecture of the DLR Hand Arm System > Stefan Jörg > IROS 2011 > 27.09.2011

SpaceWire-Implementation: Requirements for Robotics

- → Deterministic
 - Defined Topology
 - → Packet length limited to 1024 bytes
 - Clock with Time Codes
- → Low latency
 - → up to 1 Gbit/s
 - → FPGA implementation
 - → PCIx Host adapter with drivers for QNX/VxWorks
- → High integration
 - → Own electronics (cables, connectors)
- → Manageable
 - → Configuration from file
 - Test Suite

PCIx host adapter

SpaceWire-Implementation: Physical, Character, Link Layers

- → LVDS and Fiber
- ✓ Up to 1 GBit/s
- → 8b10b encoding (FPGA)
- → Links with CRC

Kinemedic 2005

Copper Link with 8b10b

ESC to Kchar mapping

SpaceWire-Implementation: Standard Network Layer

→ Implemented on FPGA

in der Helmholtz-Gemeinschaft

 Router Configuration Protocol (for runtime configuration of address tables) Kinemedic 2005

SpaceWire-Implementation: Our Transport Layer

- Connection-oriented proctocols
- → CRC protected payload
- Peer Address is configured at runtime

Results: DLR Hand Arm System – SpaceWire Topology

Results: Arm Control Application – SpaceWire Packets

Triple Joint Stack

Double Joint Stack

Host

3 kHz Host Control Loop, Signals by Datagram Protocol

	Triple	Double	Total	Bytes
Actual Packets / cycle	9	8	17	600
/ sec	27000	24000	51000	1758k
Desired Packets / cycle	5	4	9	171
/ sec	15000	12000	27000	501k
Total / cycle	14	12	26	771
/ sec	42000	36000	78000	2259k

Results: Arm Control Application - Latency of 3kHz Loop

Application		Shoulder1	Shoulder2	Upper Arm	Elbow	mean
HAL only	mean [µs]	219.34	227.65	237.23	245.99	232.55
(empty Simulink model)	std [µs]	16.53	16.53	15.00	15.01	15.77
Damping Control	mean [µs]	343.24	363.09	382.50	393.48	370.57
[Petit et al., ICRA 2011]	std [µs]	39.34	41.50	37.21	34.10	38.04

deadline: 2 cycles = 667µs

Folie 27 The Computing and Communication Architecture of the DLR Hand Arm System > Stefan Jörg > IROS 2011 > 27.09.2011

Conclusions & Outlook

- → Experiments prove stability and determinism (Latency < 667us)
 </p>
- → Hierarchical architecture enables high integration at manageable effort
- SpaceWire has been succesfully utilized as communication backbone for robotic systems of increasing complexity

Further work:

- Complete humanoid robot
- → Experiment with highly distributed algorithms (safety, reflex actions)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft