

Low-Latency Packet Delivery in SpaceWire Networks

Quantifying worst-case latency for Virtual SpaceWire Networks

Barry M Cook, C Paul H Walker
4Links Limited, Bletchley Park
England

Command/control Network

All small packets, bounded latency requirements

Telemetry Network

★ Large / very large packets, may be considerable latency

Two Networks

☆ But having two networks costs mass, power, money

Virtual SpaceWire Networks

Logically two (or more) networks - but in one set of hardware

☆ Command/control data on one Virtual Network (red) and Telemetry data on the other Virtual Network (blue)

Benefits

- Improved cost etc.
 - Saving in mass, power and complexity, from having mixed buses
 - **☆** But no need to change anything in existing nodes
- Improved FDIR
 - ★ The platform command and control is firewall protected from the payload data
 - All VSNs are isolated from faults at a lower priority level
 - Faults can be recovered by accessing via higher or lower priority VSNs
 - ☆ Timeouts can be chosen appropriately for the traffic type
- Improved performance
 - Maximized data throughput
 - Minimized worst-case latency
 - No need for accurate Time Codes for scheduling

Virtual Networks demo, 2009

Performance comparison

	Command/ control latency	Command/ control jitter	CCSDS throughput	
Empty non-Virtual Network	1.14 µs	0.2 μs	0%	
Busy non-Virtual Network	173 µs	381 µs	~100%	
Busy 2-priority Virtual Network	1.4µs	0.3 µs	~100%	

- ★ Two orders of magnitude improvement in latency and jitter compared with busy non-VSN network
- Negligible reduction in throughput for CCSDS traffic compared with busy non-VSN network

Worst-case latencies

- User response to Virtual Networks was extremely positive
- Users asked for a way to assess the worst case latencies
- The paper in the proceedings gives such a suggestion
- Here is a brief summary

Assumptions for worst-case

- All the network traffic is shared on a single Virtual SpaceWire Network link
- All the accesses are RMAP Read requests and responses
- All RMAP initiators, whatever their priority level, start their accesses at the same time and so will be queued
- The node transmitting the RMAP request has buffer space to receive the response
- All nodes are to the current ECSS standard, without supporting Virtual SpaceWire Networks in the node
- **♦ And we use a link speed of 50Mbits/s**

Example traffic mix

Frequency of control loop	Number of requests in period	Response Payload, Bytes				
5kHz	2	20				
1kHz	10	50 200				
100Hz	25					
10Hz	50	200				
1Hz	100	200				
Volume data at lowest priority						

For highest priority network

- 1. Sum for each VSN in each of that VSN's period:
 - ★ Total network delay for requests
 - Longest target latency
 - Network delay for responses
 - Longest initiator processing time before it can send next request

Activity with several VSNs

Algorithm for all VSNs

- 2. Sum for each VSN in each of that VSN's period:
 - ★ Total network delays for requests on all (higher or equal)-priority VSNs
 - ★ Total network delay for requests on this VSN
 - Longest target latency
 - Network delay for responses on all (higher or equal)-priority VSNs
 - Longest initiator processing time before it can send next request
- 3. If this sum is less than the period, then the set of accesses can be guaranteed to take place within the period

Summary for the example traffic mix 4Links

Virtual Space- Wire Network (VSN)	Prio- rity	Period, µs	Freq- uency	Number of requests in period (n)	Response Payload, Bytes	Worst case network delay for requests on this VSN in this period, µs (% of period)	Worst case network delay for responses on this VSN in this period, µs (% of period)	Shared link Request direction utilization	Shared link Response direction utilization
1	1	200	5kHz	2	20	13.8 (6.9%)	19.8 (9.9%)	5.4%	8.9%
2	2	1000	1kHz	10	50	57 (5.7%)	157 (15.7%)	5.4%	15.5%
3	3	10000	100Hz	25	200	138 (1.4%)	1214 (12.1%)	1.3%	12.1%
4	4	100000	10Hz	50	200	273 (0.3%)	2428 (2.4%)	0.3%	2.4%
5	5	1000000	1Hz	100	200	542 (0.1%)	4853 (0.5%)	0.1%	0.5%
					Real-Time utilization			12.5%	39.5%
6	6	Available bandwidth for (lowest priority) bulk data						>80%	>50%
		Total network utilization possible						>90%	>90%

Conclusions 1

- By replacing only the routing switches in a SpaceWire network, Virtual SpaceWire Networks provide the following benefits for missions:
 - the simplicity in both concept and use of Virtual SpaceWire Networks, reducing mission complexity;
 - use of a single physical network both for command/control and, separated by a firewall, for volume data;
 - reduced power consumption, cable/harness mass, and cost
 - complete compatibility with existing SpaceWire nodes;
 - complete compatibility with higher-level protocols (including CCSDS, SOIS and PnP) running over SpaceWire;
 - consistency with the layering of the SpaceWire standard so that no change is required to the ECSS SpaceWire standard;
 - greatly improved fault-isolation and recovery.

Conclusions 2

★ Virtual SpaceWire Networks are also a simple solution for real-time SpaceWire, amply adequate for 5kHz control loops, even with a low SpaceWire link speed of 50Mbits/s

All bandwidth not used for high-priority traffic is available

for bulk data

One of the Virtual SpaceWire Networks could be time triggered

- Chips and development boards will be available
- Visit 4Links exhibition booth for a demo

