
CCSDS Time Distribution

over

SpaceWire

Sandi Habinc, Marko Isomäki, Daniel Hellström

Aeroflex Gaisler AB

Kungsgatan 12, SE-411 19 Göteborg, Sweden

sandi@gaisler.com

www.Aeroflex.com/Gaisler

http://www.Aeroflex.com/Gaisler

Introduction

Time synchronization in spacecraft has always

been important. Previously it has been done via

dedicated signals or deterministic on-board buses

(e.g. MIL-STD-1553 or OBDH).

With the advent of SpaceWire point-to-point links and routing

switches being used for critical control functions the need for

accurate time synchronization via this network has arisen.

With SpaceWire-D (Deterministic) time synchronization has

become a necessity, requiring a resolution of at least 10 us,

and an accuracy of around 1 us (10% window for a kill-zone).

This presentation will focus on various issues related to time

synchronization in SpaceWire networks, specifically latency,

jitter and drift, but also on time distribution protocol features.

Time support in SpaceWire

 SpaceWire is an asynchronous network i.e. there

is no common clock signal being distributed for the

communication meaning that each node is responsible for

its own clock

 No means for handling drift caused by unstable oscillators

or crystals

 No support for automatic time message and pulse

distribution

 Rudimentary time-code transmission

 No means for handling delays and jitter caused by routing

Features of a time protocol

A time distribution protocol can have the following

features:

- Time message: carries the overall time information

- Time synchronization: synchronizes the time information

(also called a synchronization pulse)

The SpaceWire standard already has a mechanism for

carrying time information – the Time-codes. The Time-Codes

provide 64 unique incrementing values, which do not provide a

sufficient range for on-board time (normally in the range of

2**32 seconds).

The Time-codes can however be used for carrying part of the

time information and be used for time synchronization.

Other features are also desirable, e.g. time initialization.

CCSDS Unsegmented Code (CUC)

CCSDS Usegmented Code (CUC) is the most

commonly used format supported by CCSDS.

The time is counted as seconds ad sub-seconds from an

époque, with seconds being represented as positive powers of

two, and sub-seconds as negative powers of two.

The code includes a pre-amble field that defines the number of

bytes being used for representing seconds and sub-seconds,

respectively. The standard support 32 and 24 bits, respectively.

There is an ongoing revision to support additional bits.

CCSDS Unsegmented Code
Transfer Protocol (CUCTP)

CUCTP is a experimental protocol for maintaining

synchronization within a SpaceWire network developed

in cooperation with ESA, SciSys and Astrium.

Uses SpaceWire packets for high-level synchronization, based

on CCSDS Unsegmented Code (CUC). Uses SpaceWire Time-

Code time-information for low-level synchronization, which is

coupled to CUC. A new Protocol Identifier (PID) based transfer

protocol is defined for SpaceWire packets carrying CUC.

CUCTP in LEON3 Systems

The CUCTP has been implemented as an IP core

and has been used in LEON3 systems as a mean for

exploring the possibility of time distribution over SpaceWire.

The experiment has helped us to identify and understand the

pitfalls with time distribution: latency, jitter and drift.

Debug

Support

Unit

SPWCUC CUC Time

Manager

(GRCTM)

IrqCtrl Timers I/O Port

AMBA AHB

AMBA APB

I/O SRAM

AHB/APB

Bridge

Memory

Controller

PROM SDRAM

8/32-bit memory bus

IEEE754

FPU

LEON3FT

SPARC V8

Mul &

Div

MMU

2 x 4kB

D-cache

2 x 4kB

I-cache

AMBA AHB

Serial

Debug

Link

SpaceWire

Link

(GRSPW2)

RS232 LVDS

RS232 Watchdog I/O Port

UART

Time distribution pitfalls

• Latency: time it takes to transfer a synchronization

pulse from source to destination

• Jitter: variation of the above time

• Drift: mismatch between the local time in source and

destination

Let us assume that time synchronization is done via time-codes

in a SpaceWire network, then:

• Latency: serialization/de-serialization, re-synchronization

• Jitter: time-code being blocked by other transfers

• Drift: no common clock in the network

Example of a network

Time

NODE (SLAVE)

Time

NODE (SLAVE)

Time

NODE (SLAVE)

Time

NODE (MASTER)

ROUTER ROUTER

Time distribution pitfalls - solutions

• Latency: can be characterized for each device

• Jitter: can be characterized for each device

• Drift: can be handled locally in source

Examples of implementations:

• Latency: can also be measured by of e.g. interrupts and

interrupt acknowledge (future extension of time-codes), done

once in a system with fixed topology

• Jitter: same approach as above, but should be measured with

active data traffic, done once in a system with fixed topology

• Drift: done locally in destination, e.g. by measuring statistically

the difference between synchronization pulse and local time

Time distribution protocol – trade-off

ESA activity started to standardize protocol

Time format: CUC

Time message: own PID, RMAP, RMAP-like protocol & new PID

Synchronization pulse:

• Via time-code wrap-around, possibility for low level

synchronization with the other 63 values

Latency and jitter measurement:

• For SpaceWire rev D., utilized interrupt & acknowledge

Drift: not in protocol, implement locally, e.g.:

• averaging of mismatch error, brute force truncation,

programmable frequency synthesizer

Conclusion

Accurate time synchronization is essential for

upcoming SpaceWire-D, accuracy around 1 us required

Time-codes insufficient for over-all time keeping

ESA has initiated an activity for standardization of a time-

distribution protocol, synchronization, and handling of latency,

jitter and drift

The directions for the work have been presented today

The next update will be in December 2011 at the WG meeting

The goal is to have a specification ready in January 2012

The goal is to have a verified implementation ready in Q1 2012

