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Introduction 

Time synchronization in spacecraft has always 

been important. Previously it has been done via  

dedicated signals or deterministic on-board buses  

(e.g. MIL-STD-1553 or OBDH).  

With the advent of SpaceWire point-to-point links and routing 

switches being used for critical control functions the need for 

accurate time synchronization via this network has arisen.  

With SpaceWire-D (Deterministic) time synchronization has 

become a necessity, requiring a resolution of at least 10 us, 

and an accuracy of around 1 us (10% window for a kill-zone). 

This presentation will focus on various issues related to time 

synchronization in SpaceWire networks, specifically latency, 

jitter and drift, but also on time distribution protocol features. 

 

 

 



Time support in SpaceWire 

 SpaceWire is an asynchronous network i.e. there              

is no common clock signal being distributed for the 

communication meaning that each node is responsible for 

its own clock 

 No means for handling drift caused by unstable oscillators 

or crystals 

 No support for automatic time message and pulse 

distribution 

 Rudimentary time-code transmission 

 No means for handling delays and jitter caused by routing 

 

 

 



Features of a time protocol 

A time distribution protocol can have the following  

features: 

- Time message: carries the overall time information  

- Time synchronization: synchronizes the time information 

(also called a synchronization pulse) 

The SpaceWire standard already has a mechanism for 

carrying time information – the Time-codes. The Time-Codes 

provide 64 unique incrementing values, which do not provide a 

sufficient range for on-board time (normally in the range of 

2**32 seconds). 

The Time-codes can however be used for carrying part of the 

time information and be used for time synchronization. 

Other features are also desirable, e.g. time initialization.  

 

 

 



CCSDS Unsegmented Code (CUC) 

CCSDS Usegmented Code (CUC) is the most  

commonly used format supported by CCSDS. 

The time is counted as seconds ad sub-seconds from an 

époque, with seconds being represented as positive powers of 

two, and sub-seconds as negative powers of two. 

The code includes a pre-amble field that defines the number of 

bytes being used for representing seconds and sub-seconds, 

respectively. The standard support 32 and 24 bits, respectively. 

There is an ongoing revision to support additional bits.  

 



CCSDS Unsegmented Code  
Transfer Protocol (CUCTP) 

CUCTP is a experimental protocol for maintaining 

synchronization within a SpaceWire network developed  

in cooperation with ESA, SciSys and Astrium. 

Uses SpaceWire packets for high-level synchronization, based 

on CCSDS Unsegmented Code (CUC). Uses SpaceWire Time-

Code time-information for low-level synchronization, which is 

coupled to CUC. A new Protocol Identifier (PID) based transfer 

protocol is defined for SpaceWire packets carrying CUC. 

 

 

 



CUCTP in LEON3 Systems 

The CUCTP has been implemented as an IP core 

and has been used in LEON3 systems as a mean for  

exploring the possibility of time distribution over SpaceWire. 

The experiment has helped us to identify and understand the 

pitfalls with time distribution: latency, jitter and drift. 
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Time distribution pitfalls 

• Latency: time it takes to transfer a synchronization  

pulse from source to destination 

• Jitter: variation of the above time 

• Drift: mismatch between the local time in source and 

destination 

Let us assume that time synchronization is done via time-codes 

in a SpaceWire network, then: 

• Latency: serialization/de-serialization, re-synchronization 

• Jitter: time-code being blocked by other transfers 

• Drift: no common clock in the network  

 

 

 



Example of a network 
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Time distribution pitfalls - solutions 

• Latency: can be characterized for each device 

• Jitter: can be characterized for each device 

• Drift: can be handled locally in source 

Examples of implementations:  

• Latency: can also be measured by of e.g. interrupts and 

interrupt acknowledge (future extension of time-codes), done 

once in a system with fixed topology 

• Jitter: same approach as above, but should be measured with 

active data traffic, done once in a system with fixed topology 

• Drift: done locally in destination, e.g. by measuring statistically 

the difference between synchronization pulse and local time 

 



Time distribution protocol – trade-off 

ESA activity started to standardize protocol 

Time format: CUC 

Time message: own PID, RMAP, RMAP-like protocol & new PID 

Synchronization pulse: 

• Via time-code wrap-around, possibility for low level 

synchronization with the other 63 values 

Latency and jitter measurement: 

• For SpaceWire rev D., utilized interrupt & acknowledge 

Drift: not in protocol, implement locally, e.g.: 

• averaging of mismatch error, brute force truncation, 

programmable frequency synthesizer 

 



Conclusion 

Accurate time synchronization is essential for  

upcoming SpaceWire-D, accuracy around 1 us required 

Time-codes insufficient for over-all time keeping 

ESA has initiated an activity for standardization of a time-

distribution protocol, synchronization, and handling of latency, 

jitter and drift 

 

The directions for the work have been presented today 

The next update will be in December 2011 at the WG meeting 

The goal is to have a specification ready in January 2012 

The goal is to have a verified implementation ready in Q1 2012 

 

 

 


