

Performance of SpaceWire Plug-and-Play Protocols

Robert A. Klar, Daniel P. Goes, Paul B. Wood and Sue A. Baldor

Southwest Research Institute

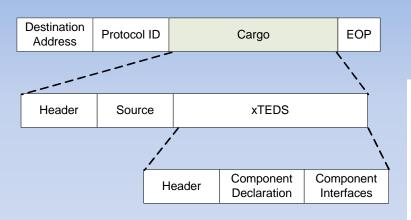
- Overview
- SpaceWire Plug and Play protocols
 - Overview and Terminology
 - Messaging and Protocol Stacks
 - Services
- Performance
- Advantages and Disadvantages

- Plug-and-Play (PnP) describes a mechanism by which devices can be discovered and configured automatically to be ready for use soon after they are inserted into a system
- Two different standards have emerged which provide Plugand-Play support for SpaceWire networks
 - Space Plug-and-Play Architecture (submitted to AIAA)
 - SpaceWire-PnP (submitted to ECSS)

SPA/SPA-S

- SPA Space Plug-and-Play
 Architecture
 - formerly Space Plug-and-Play Avionics
- SPA-S SPA SpaceWire Subnet
- SSM/SSI SPA Services
 Manager/Infrastructure
 - replaces and expands upon the Satellite Data Model
- CAS Central Addressing Service
- SPA-L SPA Local Interconnect
- SM-s Subnet Manager for SpaceWire
- xTEDS Extensible Markup Language
 Transducer Electronic Data Sheets
- UUID Universally Unique ID

SpaceWire PnP


- RMAP Remote Memory Access
 Protocol
- Active Node a node which can initiate protocol commands
- Passive Node a node which can receive and respond to protocol commands
- Level 1 Networks have only one active node
- Level 2 Networks can have more than one active node

- SPA-S uses SPA messaging
 - Component Information described by xTEDS

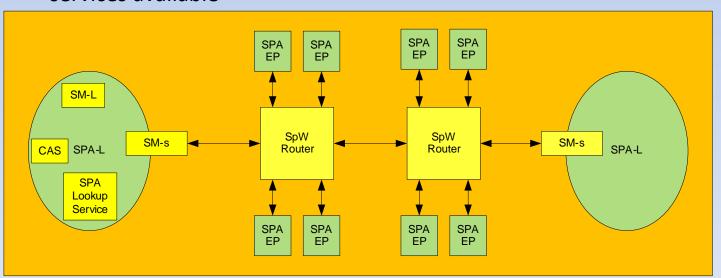
- SpaceWire PnP uses subset of RMAP messaging
 - Targets include standard parameters for Device Identification

	First byte transmitted		
	Target SpW Address		Target SpW Address
Target Logical Address	Protocol Identifier	Instruction	Key
Reply Address	Reply Address	Reply Address	Reply Address
Reply Address	Reply Address	Reply Address	Reply Address
Reply Address	Reply Address	Reply Address	Reply Address
Initiator Logical Address	Transaction Identifier (MS)	Transaction Identifier (LS)	Extended Address
Address (MS)	Address	Address	Address (LS)
Data Length (MS)	Data Length	Data Length (LS)	Header CRC
Data	Data	Data	Data
Data			Data
Data	Data CRC	EOP	

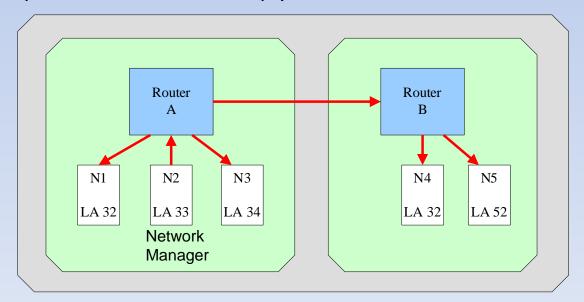
Last byte transmitted

1 - Figure from ECSS-E-ST-52C, February 2010

- SPA/SPA-S
 - Topology Discovery
 - SPA Packet Routing
 - Subnet manager keeps a routing table which converts from SPA logical addresses to SpW path addresses
 - SPA logical addresses are not SpaceWire logical addresses


- SpaceWire PnP
 - Device Identification
 - Network Configuration
 - Link Configuration
 - Router Configuration
 - Time-Code Source
- Two levels of service
 - Level 1 Managed Networks(1 active node)
 - Level 2 Open Networks(more than 1 active node)

- SpaceWire Subnet Managers (SM-s) independently discover the paths to network endpoints
 - SPASpaceWireRouterProbe used to interrogate routers
 - SPASpaceWireEndpointPing used to find ports where endpoints are attached
 - SM-s requests a block of SPA logical addresses from the Central Addressing Service and uses this information to route packets to components
 - Under SPA, components register with a Lookup Service in order to make services available


2 - Figure from DRAFT AIAA SPA-S Standard

- A Network Manager queries devices by using a breadth-first traversal.
 - Messages are sent to the configuration port (port 0) of each device in order to identify capabilities.
 - Device Identification provides some information
 - the number of active ports available for a device (can be used to determine if this a router)
 - the port used to send the reply

- Network discovery for both SPA-S and SpaceWire-PnP depend on a breadth-first search algorithm. Each network manager or active node must search the entire subnetwork. Thus, expected performance is O(N +L), where N is the number of nodes on the network and L is the number of links.
- For both protocols, specific timing requirements have not been levied on devices. This makes comparison of timing between the protocols difficult without evaluating particular implementations.
 - Experimental research is needed to realistically evaluate performance.

- Performance will be influenced by several implementation factors:
 - Device Protocol Support
 - Since the message format for SpaceWire-PnP is based on RMAP, many devices today that support RMAP could be adapted to also support SpaceWire-PnP. Hardware support would improve speed.
 - To comply with SPA-S, an end node must only keep a routing path to a Subnet Manager (SM-s). Nevertheless, since routing messages through the SM-s can overload it, it is desirable for end nodes to cache routes to other nodes that they communicate with often.
 - Network Topology
 - A larger network will take longer to map than a smaller one. Timing delays for an Open Network will be less controlled than for a Managed Network.

SPA/SPA-S

- (SPA-S) Integrates well with SPA
- Provides an integrated set of services that is independent of transport
- Processing elements
 required to parse and
 make use of xTEDs
 messaging

SpaceWire PnP

- Integrates well with SpaceWire Protocol Stack
- Leverages existing development for RMAP protocol
- Provides support for Link and RouterConfiguration

SPA/SPA-S

- Network Discovery takes a bit more time because the protocol does not take advantage of device identification
- Does not include facilities for link and router management
- Routing through the
 SM-s limits throughput

SpaceWire PnP

- Does not provide native provisions for registering device services
 - Could potentially also use xTEDS
- Imposes some requirements on devices
 - Some legacy devices may not be compatible
- RMAP timing requirements limit size of network

Questions?

- 1. ECSS-E-ST-50-12C, Space Engineering: SpaceWire Links, nodes, routers, and networks", ESA-ESTEC, July 2008.
- 2. "Space Plug-and-Play Architecture Standard SpaceWire Subnet Adaptation," American Institute of Aeronautics and Astronautics, 2010, *DRAFT*.
- 3. Mendham, P., Florit, A. F., and Parkes, S., "Spacewire-PnP Protocol Definition," Space Technology Centre, University of Dundee, September 16, 2009, *DRAFT A, Issue 2.1*.