

Avoiding SpaceWire Network Congestion

Martin Suess, Albert Ferrer SpaceWire 2011 San Antonio TX 09/11/2011

Overview

- Simple network example
- Impacts of the SpaceWire switching scheme for network throughput
- Relation between maximum latency and node buffer requirement
- Node parameters that need to to be specified
- Conclusion

- Network with 4 nodes and one routing switch
- The routing switch uses round robin arbitration

 Node 1 to 3 are instruments need to transfer the payload data generated to the mass memory in node 4

- The instruments generate their data at a fixed rate
- The link data rates are set to the following data rates

- SpaceWire routing switches are specified to use Wormhole Switching
- This is keeping the switches simple, low power and requires little memory
- Together with link flow control it ensures that no packets are dropped by the network
- It has been developed in the context of Transputer Systems and today often used in Network-on-Chip

The routing switch receives the packet and checks availability of the requested output port

- SpaceWire routing switches are specified to use Wormhole Switching
- This is keeping the switches simple, low power and requires little memory
- Together with link flow control it ensures that no packets are dropped by the network
- It has been developed in the context of Transputer Systems and today often used in Network-on-Chip

The routing switch connects input and output port and let the packet flows through

- SpaceWire routing switches are specified to use Wormhole Switching
- This is keeping the switches simple, low power and requires little memory
- Together with link flow control it ensures that no packets are dropped by the network
- It has been developed in the context of Transputer Systems and today often used in Network-on-Chip

While the packet is transferred the complete end-to-end path is occupied

- SpaceWire routing switches are specified to use Wormhole Switching
- This is keeping the switches simple, low power and requires little memory
- Together with link flow control it ensures that no packets are dropped by the network
- It has been developed in the context of Transputer Systems and today often used in Network-on-Chip

Only after the EOP has passed the occupied link is accessible for other packets again

Link Occupation Duty Cycle

- The continuous data stream from the instruments is segmented at the at the source node
- A link occupation duty cycle can be defined as:

$$link_occupation_duty_cycle = \frac{average_source_data_rate}{achievable_link_bandwidth}$$

- The average_source_data_rate corresponds to instrument data rate
- The achievable_link_bandwidth during transmission is determined by the slowest link on the data path

Note: Due to the parity and the data-control flag used per 8 data bits only 80% of the gross data rate is available for data

For the simple example given before the link occupation duty cycle is:

- Node 1:
$$\frac{10Mbps}{0.8 \cdot 25Mbps} = 50\%$$

- Node 2:
$$\frac{4Mbps}{0.8 \cdot 10Mbps} = 50\%$$

Node 3:
$$\frac{24Mbps}{0.8 \cdot 50Mbps} = 60\%$$

- The link to node 4 is already fully occupied the traffic from node 1+2
- Including the traffic from node 3 it would reach 160%
- The described simple network shows excessive congestion and is not stable

Excessive Network Congestion

- The excessive Network congestion is illustrated with an OpNet simulation
- Segment size equals 1k
- For nodes 1 and 3 the effective data rate with congestion is less than instrument data rate
- This would result in a local buffer overflow

Solution for the simple example

- The resulting link occupation duty cycle must be kept below 100%
- One solution is to run all links at 50Mbps
- The link duty cycles of nodes 1 to 3 result in: 25%+10%+60%=95%
- One other solution could be to run the links from node 2 and 3 at 100Mbps: 50%+5%+24%=79%
- Such a network configuration is called stable

Achievable Bandwidth

- Is it sufficient to select the correct SpaceWire link speeds?
- Internal properties of the transmitting or receiving node can further reduce the achievable_link_bandwidth
- This limitation can be e.g. due to
 - Lower node internal bandwidth
 - Arbitration of hardware resources
 - Software schedule
 - Interrupt latency
- The achievable_link_bandwidth is determined by the slowest element in the data path including the transmit and the receive node

Node Data Buffer

- Also a network in stable configuration requires sufficient buffer space
- Node buffer overflow results in data loss
- In the instrument source node the data first have to be buffered and segmented
- Once a whole data segment is buffered it can be transmitted
- The required buffer size depends on the product of the average source data rate and maximum latency

Maximum Latency

An upper bound for the latency of each data flow can be calculated

- The latency is the sum of:
 - Time required for segment transfer
 - Latency due to network congestion
- The upper bound of the latency depends on:
 - Segment lengths
 - Target node and switch latency
 - Network topology
 - Interfering data flows
 - Effective link speed

Node Level Requirements

- In addition to the link speed a number of node parameters have to be specified.
- For the source node:
 - Minimum effective data rate with which a packet can be sent out on the network
 - Maximum average data rate the node is allowed to send out
 - Segment or packet size
 - Minimum source buffer size
- For the target node:
 - Segment or packet size,
 - Minimum effective data rate with which a single segment or packet can be received from the network,
 - Maximum delay time before packet is received at the effective data rate
 - Minimum average receive data rate that can be sustained which may sometimes be less than the effective receive data rate

- For more complex networks and flows the set of requirements can be obtained by simulation
- They need to be imposed on the units already at Phase B
- The requirements should be tested for each node at subsystem level
- This approach ensures the correct interoperation of all nodes and data flows once integrated at system level

Conclusions

- SpaceWire is a wormhole switch based network
- Utilising different link speeds in the same network has to be used with great care
- It is not enough to specify the SpaceWire link speed for a unit
- The data flows present in the on-board network are typically well defined
- There exist an upper bound for the maximum latency
- The buffers to cope with the network latency are located inside the transmitting node
- Sufficient transmit buffer size is required to prevent data loss