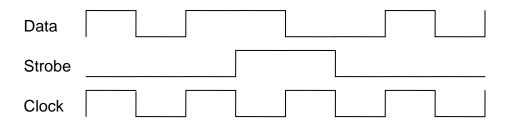
DC-Balanced Character Encoding for SpaceWire

Cliff Kimmery

- Many applications migrating to SpaceWire from alternate communications protocols (e.g. MIL-STD-1553) provide much greater tolerance for long-term and transient differences between ground references
 - Standard SpaceWire has limited support for applications requiring galvanic isolation between link endpoints
 - Limited common-mode tolerance of ANSI/TIA/EIA-644 LVDS devices
 - Unbalanced character-level encoding method established by ECSS-E-ST-50-12C, Clause 7 [1]
- Proposed solution: a practical alternative character-level encoding method
 - Support galvanic isolation using conventional Alternating Current (AC)-coupling circuits
 - Maintain current ANSI/TIA/EIA-644 LVDS technology
 - Maintain the clock recovery benefits of Data-Strobe encoding
 - Provide error detection comparable to the standard SpaceWire parity check
 - Minimize the impact to link bandwidth efficiency
 - [1] ECSS, "Space engineering SpaceWire Links, nodes, routers and networks", ECSS-E-ST-50-12C, 31 July 2008, pages 52-56, http://spacewire.esa.int/content/Standard/ECSS-E50-12A.php


- The result is a class of codes that simultaneously Direct Current (DC)-balance both the Data and Strobe bit streams
 - Members of the class with a larger code size increase encoding overhead
 - Members with a smaller code size have greater algorithm complexity
 - To track running disparity, etc.
 - Examples of the class
 - 10 bits smaller code size and complex encoding method
 - 12 bits large code size and simple encoding method
 - 14 bits large code size and complex encoding method

Note that the term **character** is used in this presentation as defined by the SpaceWire standard and includes data characters and control characters

- The term **code** is defined as a binary value used to represent a character when transmitted on the SpaceWire link
- In standard SpaceWire, a character and the corresponding code are identical

- SpaceWire character encoding background
- DC-Balanced character encoding background
- Development of DC-Balanced character encoding
 - Evaluation of code value candidates
 - Code set size
 - Code set selection results
 - Effects of code length on bandwidth efficiency
 - Error detection capability
- Results and conclusions
- Summary

- SpaceWire character-level encoding starts with Non-Returnto-Zero (NRZ) encoded ten-bit characters serialized as the Data signal
 - The Strobe signal is generated from the Data signal by Exclusive OR (XOR) with an alternating binary one-zero pattern of identical length (see the figure)
 - The alternating one-zero pattern represents a one-half-rate clock with transitions corresponding to the bit intervals of the Data signal
 - Commonly known as a Double-Data Rate (DDR) clock
- Because standard SpaceWire encoding uses raw binary values to form NRZ-encoded characters for the Data signal, the degree of DC balancing achieved is determined by the character sequence transmitted
 - Introducing a balanced Data signal bit stream doesn't automatically create a balanced bit stream for the corresponding Strobe signal

- Each transmitted bit stream (Data and Strobe) must have the same transition-rich characteristics so that the frequency content is equivalent
 - The DC-Balanced Data character encoding must result in comparable transition density and run-length for Data and Strobe
- The initial transition density and run-length benchmarks were established from the well-known 8b10b encoding method
 - 8b10b encoding guarantees a transition-rich data stream so that the receiving device can recover clock from the serial data (embedded clock)
 - Definition of transition rich [2]

For every 20 successive bits transferred

- 1. The disparity (the difference in the number of ones and the number of zeros) cannot be more than two
- 2. There cannot be more than five ones or five zeros in a row
- Why not use the 8b10b encoding method directly?
 - Because of the need to DC-balance both the Data and Strobe signals simultaneously
 - The Strobe bit stream generated from an 8b10b encoded Data bit stream does not have adequate DC-balancing characteristics
 - [2] Alex Goldhammer and John Ayer Jr., "Understanding Performance of PCI Express Systems", September 4, 2008, page 2, http://www.xilinx.com/support/documentation/white_papers/wp350.pdf

- Convert the 8b10b run-length benchmark criterion to a form that allows easy evaluation of candidate binary values
 - The number of consecutive same-value bits within any two successive encoded characters should be five or less
 - Including the boundary between the two characters
- Translating the disparity benchmark criterion is nontrivial when the code size is greater than 10 bits
 - Use a somewhat stronger approximation
 - The disparity of any single code must be one or less (corresponding to two consecutive codes with combined disparity of two or less)
- Each code that has nonzero disparity must have at least one alternate code with the opposite (negative) disparity
 - Any character can occur in combination with any other character (including itself)
 - A binary value with an even number of bits has even disparity 0, 2, 4, etc.
 - A binary value with an odd number of bits has odd disparity 1, 3, 5, etc.

- Selection for membership in a candidate DC-Balanced code set was based on the following parameters
 - 1. Maximum disparity (8b10b criterion: ≤ 2 for any 20-bit sequence)
 - The disparity of each code in the code set must be no greater than the maximum disparity parameter
 - 2. Maximum run-length (8b10b criterion: ≤ 5 for any 20-bit sequence)
 - The number of consecutive one bits or zero bits must be no greater than the maximum run-length parameter
 - 3. Maximum leading run-length
 - The number of consecutive leading one bits or zero bits must be no greater than the maximum leading run-length parameter
 - 4. Maximum trailing run-length
 - The number of consecutive trailing one bits or zero bits must be no greater than the maximum trailing run-length parameter
- The code boundary run-length issue was addressed by including the maximum leading and maximum trailing run-length parameters

Maximum Disparity	Maximum Run-Length	Maximum Leading Run-Length	Maximum Trailing Run-Length
1	5	2	3

- The SpaceWire character set has 256 data characters and 4 control characters
 - At least 260 distinct code pairs are needed to encode the complete character set
 - A set of code pairs with a nonzero maximum disparity characteristic must include a minimum of 520 distinct code pairs
 - Each pair must be matched with another pair with the opposite disparity to allow representation of the same SpaceWire character with either pair
 - Odd-length codes must always include a minimum of 1,040 distinct code pairs
 - Non-zero disparity is inherent
 - The nature of Data-Strobe encoding causes two identical odd-length Data codes in succession to produce different Strobe codes
 - It is convenient to require that successive identical SpaceWire characters be encoded to different odd-length codes

Code Result by Length

Bits	Maximum Disparity	Maximum Run-Length	Set Size	
Even length codes require a set size of 260 (disparity 0) or 520				
10	4	7	552	
12	0	6	284	
14	2	4	1144	
16	0	4	260	
Odd length codes require a set size of 1,040				
11	3	8	1048	
13	1	7	1040	
15	1	4	1188	

Note: the Maximum Run-Length is the greater of the Run-Length and the sum of the Leading Run-Length and the Trailing Run-Length

Note: the Set Size is the number of codes that met the corresponding evaluation criteria. The codes to be used are chosen from the full set as desired.

- Standard SpaceWire characters have differing lengths depending upon function
 - Any code length greater than the standard length can have a significant impact on link bandwidth efficiency
- Overall SpaceWire link efficiency is dynamically determined by the mix of SpaceWire characters transmitted
 - Data characters and FCT characters dominate link traffic
 - End-of-packet characters are relatively rare
 - Time code characters are rarer still
 - Null characters are only used to keep the link active

- Standard SpaceWire adds a parity bit to each encoded character to detect transmission bit errors
 - The error response is to disconnect the link, report the error and attempt to reconnect the link (the same approach is used to recover from all link errors)
- The DC-Balanced codes have intrinsic characteristics that make transmission error detection straightforward
 - The error response defined by standard SpaceWire is unchanged
 - The DC-Balanced decoding mechanism has inherent error detection capability since an unrecognized code is considered an error
 - A transmission error occurring in a DC-Balanced code must convert that code to a different valid code for the error to be undetectable
 - The members of a DC-Balanced code set can be selected to have sufficient Hamming distance to prevent many transmission errors from being undetectable
 - Either the Data code or the Strobe code can be decoded to the equivalent SpaceWire character
 - In cases where an adequate Hamming distance is not achievable, the Data code and the Strobe code can be independently decoded and then compared to detect most transmission errors
 - The two mechanisms can clearly be combined to provide very robust transmission error detection

- The 15-bit length code set is the most bandwidth efficient of the DC-Balanced code sets that fully met the 8b10b benchmark criteria
 - The bandwidth efficiency is at best 63% that of standard SpaceWire
- The other fully qualified code set (16-bits) is less efficient than the 15-bit code set, but is simpler to implement
- Relaxing the benchmark criteria allows use of DC-Balanced code sets with greater bandwidth efficiency
 - The effects of relaxing the benchmark criteria on link performance must be determined by signal integrity analysis and experimentation
- The 12-bit length DC-Balanced code set has the advantage of zero-disparity implementation simplicity
 - Exceeds the run-length benchmark criterion by 20%
 - The bandwidth efficiency can be improved to approximately 80% by choosing an FCT code with at most 6-bit length

- The 10-bit DC-Balanced code has the best bandwidth efficiency
 - Improves the bandwidth efficiency to within 5% of standard SpaceWire when using a 6-bit FCT code length
 - Misses the disparity criterion significantly
 - The achievable running disparity varies based on the tracking method used
 - DC-Balanced encoding must track the running disparity for both SpaceWire signals (Data and Strobe) simultaneously
 - The goal is to minimize the running disparity of each signal without unnecessarily minimizing one at the expense of the other
 - Modeling has shown that the 10-bit code set running disparity can be limited to eight or less for a bit stream composed of a random code sequence
 - Misses the run-length criterion by 40% (no mitigation method is available)
 - The ability to take advantage of the bandwidth efficiency of the 10bit code set will depend on signal integrity analysis and experimentation

- An alternative character-level encoding method
 - Supports galvanic isolation of SpaceWire links using conventional AC-coupling circuits
 - Limits changes to the character-level of the standard
 - Provides transmission error detection comparable to the standard SpaceWire parity check
- The major tradeoffs to be considered
 - The impacts to SpaceWire link bandwidth efficiency
 - Encoding/decoding implementation complexity
 - Frequency performance using AC-coupled circuits
 - Needs further analysis and experimentation