/‘\ STAR-Dundee

Standardisation of
SpaceWire Software APIs

Stuart Mills, Alex Mason — STAR-Dundee
Steve Parkes — University of Dundee
Takayuki Yuasa — JAXA/ISAS

Fourth International SpaceWire Conference
10t November 2011



Introduction — APIs and STAR-Dundee



+§TAR-Dundee What’'s An API?

= Application Programming Interface

= According to Wikipedia:

— “. a particular set of rules (‘code') and specifications that
software programs can follow to communicate with each
other.”

= |f an API changes, then the software accessing the
API| must also change

= |If one software module provides the same API as
another, the two modules can be used
iInterchangeably



+§TAR-Dundee STAR-Dundee’s API Experience

= Developed APIs to provide interfaces to our devices

— Our first SpaceWire API was released over 10 years ago, a
few years before SpaceWire was standardised

— Allow users to write software to perform unigue tasks using
our standard devices

= Provide similar APIs for different device types
— SpaceWire PCl API
— SpaceWire USB API

= APIs consistent across platforms

= Worked with NEC Toshiba Space Systems in porting
USB API to Space Cube



+§TAR-Dundee Latest STAR-Dundee API

= Recently released a new software stack and API
(STAR-System)

— Will support all new and future STAR-Dundee devices

= Consistent interface for all device types

= Consistent interface and behaviour on all platforms
— Windows, Linux, QNX, VxWorks, ...

= Newer versions of the API will be consistent with older
versions

= Designed to expose features required during
development and testing of SpaceWire devices and
networks



+§TAR-Dundee STAR-Dundee API Performance

All STAR-Dundee APIs and drivers are written to provide high
performance

Allow traffic to be transmitted and received at very high speeds,
without much load on the processor

For example, if the transmit function only allows one packet to be
transmitted:

— The packet will be DMAd to the transmitting device

— The device will be instructed to transmit the packet

— The device will generate an interrupt when the packet is transmitted
— The interrupt will be dealt with by the processor

— Finally the user application will be informed the packet has been
transmitted

If the transmit function allows multiple packets to be transmitted:
— The above steps only need to occur once for all packets



SpaceWire APIs



+§TAR-Dundee SpaceWire APIs

No standards or even recommendations for
SpaceWire APlIs

Each hardware manufacturer can provide a
completely different API for accessing each device

Greatly reduces opportunities for software reuse

Test and development equipment will provide
different features to flight equipment

But likely to be a number of features which are
consistent



+§TAR-Dundee Using Existing APIs

= POSIX Sockets API is most likely candidate

= STAR-Dundee’s Router-USB and Brick supports
the Sockets API on Linux

— But strongly discourage users from using this
— Other than when investigating TCP/IP over SpaceWire



+§TAR-Dundee Using The Sockets API

= Sockets API doesn’t expose features specific to
SpaceWire

= Additional APIs would also be needed to configure
devices

= Some cases where Sockets API could be useful

— send () and recv () functions would probably need
modified to transmit/receive one SpaceWire packet

= Would allow developers to use familiar API
= But unlikely to provide high performance



+§TAR-Dundee Typical SpaceWire APIs

= Not just limited to transmitting and receiving
packets

= Support for protocols carried over SpaceWire

= Functions for configuring devices



+§TAR-Dundee Packet Transfer APIs

Easy to assume this is quite simple

But important to provide a high performance
Interface

Also need to provide functions for opening and
closing connections to a device

May also need to provide test and development
functions



Forar-bundes RMAP APIs

= Can be split up depending on functionality required
= RMAP Packet API
= RMAP Initiator API

= RMAP Target API



+§TAR-Dundee Other Protocol APIs

= E.g. CCSDS Packet Transfer Protocol, GOES-R
RDDP, SpaceWire-PnP

= As with RMAP, can be split in to a packet building
and interpreting APl and an implementation API

= API required will depend on software being written

= Some protocols will already have a standardised
APl which can be used



+§TAR-Dundee Device Configuration APIs

= Functions to configure the features of devices

= Difficult to standardise due to differences between
devices

= Some features common to a number of devices
= Additional functions specific to device types

= Some functions specific to an individual device

= SpaceWire-PnP will make things easier



‘*’STAR-Dundee STAR-System Device Configuration

/N




Summary, Conclusions and Future



+§TAR-Dundee Summary

= Many different APIs exist to access SpaceWire
devices

= Typical SpaceWire APIs:
— Packet Transfer API
— Protocol APIs
— Device Configuration APIs

= Using existing APIs with SpaceWire is not ideal



+§TAR-Dundee Conclusions

The time required for a developer to learn a new API
can be considerable

Mistakes made when developing with an unfamiliar
APl can be costly

Standardisation would bring other benefits:

— “Shim” layers would no longer be required to deal with
differences between device types

— Software could be developed and tested on existing test
equipment before being moved to new flight equipment

SpaceWire Is intended to encourage reuse

Software cannot easily be reused between projects
unless software APIs are standardised



+§TAR-Dundee What Next?

Japanese agencies, academia and industry have
identified the importance of standard SpaceWire APIs

STAR-Dundee has a “standard” API to be used by all
future STAR-Dundee devices

It Is Important that the rest of the SpaceWire community
isn’t left behind, or is forced to accept standard APIs
which do not meet their needs

The entire SpaceWire community must therefore take
responsibility for any software standardisation efforts



