
Standardisation of

SpaceWire Software APIs

Stuart Mills, Alex Mason – STAR-Dundee

Steve Parkes – University of Dundee

Takayuki Yuasa – JAXA/ISAS

Fourth International SpaceWire Conference

10th November 2011

Introduction – APIs and STAR-Dundee

What’s An API?

 Application Programming Interface

 According to Wikipedia:
– “.. a particular set of rules ('code') and specifications that

software programs can follow to communicate with each
other.”

 If an API changes, then the software accessing the
API must also change

 If one software module provides the same API as
another, the two modules can be used
interchangeably

STAR-Dundee’s API Experience

 Developed APIs to provide interfaces to our devices
– Our first SpaceWire API was released over 10 years ago, a

few years before SpaceWire was standardised

– Allow users to write software to perform unique tasks using
our standard devices

 Provide similar APIs for different device types
– SpaceWire PCI API

– SpaceWire USB API

 APIs consistent across platforms

 Worked with NEC Toshiba Space Systems in porting
USB API to Space Cube

Latest STAR-Dundee API

 Recently released a new software stack and API
(STAR-System)
– Will support all new and future STAR-Dundee devices

 Consistent interface for all device types

 Consistent interface and behaviour on all platforms
– Windows, Linux, QNX, VxWorks, …

 Newer versions of the API will be consistent with older
versions

 Designed to expose features required during
development and testing of SpaceWire devices and
networks

STAR-Dundee API Performance

 All STAR-Dundee APIs and drivers are written to provide high
performance

 Allow traffic to be transmitted and received at very high speeds,
without much load on the processor

 For example, if the transmit function only allows one packet to be
transmitted:
– The packet will be DMAd to the transmitting device

– The device will be instructed to transmit the packet

– The device will generate an interrupt when the packet is transmitted

– The interrupt will be dealt with by the processor

– Finally the user application will be informed the packet has been
transmitted

 If the transmit function allows multiple packets to be transmitted:
– The above steps only need to occur once for all packets

SpaceWire APIs

SpaceWire APIs

 No standards or even recommendations for

SpaceWire APIs

 Each hardware manufacturer can provide a

completely different API for accessing each device

 Greatly reduces opportunities for software reuse

 Test and development equipment will provide

different features to flight equipment

 But likely to be a number of features which are

consistent

Using Existing APIs

 POSIX Sockets API is most likely candidate

 STAR-Dundee’s Router-USB and Brick supports

the Sockets API on Linux

– But strongly discourage users from using this

– Other than when investigating TCP/IP over SpaceWire

Using The Sockets API

 Sockets API doesn’t expose features specific to

SpaceWire

 Additional APIs would also be needed to configure

devices

 Some cases where Sockets API could be useful

– send() and recv() functions would probably need

modified to transmit/receive one SpaceWire packet

 Would allow developers to use familiar API

 But unlikely to provide high performance

Typical SpaceWire APIs

 Not just limited to transmitting and receiving

packets

 Support for protocols carried over SpaceWire

 Functions for configuring devices

Packet Transfer APIs

 Easy to assume this is quite simple

 But important to provide a high performance

interface

 Also need to provide functions for opening and

closing connections to a device

 May also need to provide test and development

functions

RMAP APIs

 Can be split up depending on functionality required

 RMAP Packet API

 RMAP Initiator API

 RMAP Target API

Other Protocol APIs

 E.g. CCSDS Packet Transfer Protocol, GOES-R

RDDP, SpaceWire-PnP

 As with RMAP, can be split in to a packet building

and interpreting API and an implementation API

 API required will depend on software being written

 Some protocols will already have a standardised

API which can be used

Device Configuration APIs

 Functions to configure the features of devices

 Difficult to standardise due to differences between

devices

 Some features common to a number of devices

 Additional functions specific to device types

 Some functions specific to an individual device

 SpaceWire-PnP will make things easier

STAR-System Device Configuration

Router

Configuration API

PCI Mk2

Configuration API

PCIe

Configuration API

USB Brick

Configuration API

Router-USB Mk2

Configuration API

Summary, Conclusions and Future

Summary

 Many different APIs exist to access SpaceWire

devices

 Typical SpaceWire APIs:

– Packet Transfer API

– Protocol APIs

– Device Configuration APIs

 Using existing APIs with SpaceWire is not ideal

Conclusions

 The time required for a developer to learn a new API
can be considerable

 Mistakes made when developing with an unfamiliar
API can be costly

 Standardisation would bring other benefits:
– “Shim” layers would no longer be required to deal with

differences between device types

– Software could be developed and tested on existing test
equipment before being moved to new flight equipment

 SpaceWire is intended to encourage reuse

 Software cannot easily be reused between projects
unless software APIs are standardised

What Next?

 Japanese agencies, academia and industry have

identified the importance of standard SpaceWire APIs

 STAR-Dundee has a “standard” API to be used by all

future STAR-Dundee devices

 It is important that the rest of the SpaceWire community

isn’t left behind, or is forced to accept standard APIs

which do not meet their needs

 The entire SpaceWire community must therefore take

responsibility for any software standardisation efforts

