
SpaceWire Electronic Ground Support

Equipment (EGSE)

1

Stephen Mudie, Paul E McKechnie,

Steve Parkes, Martin Dunstan

Introduction

 What is the SpaceWire EGSE?

 How does it work?

– Hardware

– Software

 Scripting Language

 Capabilities/Benefits

 Examples

2

SpaceWire EGSE

 What it is: SpaceWire test and development unit

developed by STAR-Dundee

 Purpose: Simulate instruments or other SpaceWire

equipment in real time during testing and

integration

 Generates user defined packets in pre-defined

sequences at specific times and data rates

– i.e. packet 1 followed by packet 2 10ms later at 100Mbps

3

SpaceWire EGSE Hardware

4

 2 SpaceWire ports

 4 External Triggers (3 IN, 1

OUT)

 Indicator LEDs

 128MB Memory

 USB connection to host PC

SpaceWire EGSE Software

 Compiler

– Compiles scripts into EGSE configuration files

 Configurator

– Loads EGSE configuration files onto hardware

 Software API

– Can be used to interact with EGSE whilst in operation

5

SpaceWire EGSE Scripting Language

 Packet Definition

 Variables

– Used to define packets with dynamic data

 Packet Generation Schedules

 State Machines

– Control current packet generation schedule

 Events

– State machines reacts to events

6

Packet Definition

 Format

– Header, body, footer

7

packet myPkt

 hex(0A 0B 0C 0D)

 eop

end packet

Packet Definition

 Format

– Header, body, footer

 Data defined in hex

or decimal

8

packet myPkt

 hex(0A 0B 0C 0D)

 dec(1 2 3 4)

 eep

end packet

Packet Definition

 Format

– Header, body, footer

 Data defined in hex

or decimal

 EOP and EEP

control characters

9

packet myPkt

 hex(0A 0B 0C 0D)

 dec(1 2 3 4)

 eop

end packet

Packet Definition

 Format

– Header, body, footer

 Data defined in hex

or decimal

 EOP and EEP

control characters

 CRC and checksum

calculations

10

packet myPkt

 start(crc8)

 hex(0A 0B 0C 0D)

 dec(1 2 3 4)

 stop(crc8)

 crc8

 eep

end packet

Variables

 Used to define

packets with

dynamic data

 Referenced in

packet definition

 Types:

– Increment

11

variables

 transactionID inc8 = 0

end variables

packet myPkt

 hex(0A 0B 0C 0D)

 transactionID

 eop

end packet

Variables

 Used to define

packets with

dynamic data

 Referenced in

packet definition

 Types:

– Increment

– Decrement

12

variables

 myDecVar dec8 = 10

end variables

packet myPkt

 hex(0A 0B 0C 0D)

 myDecVar

 eop

end packet

Variables

 Used to define

packets with

dynamic data

 Referenced in

packet definition

 Types:

– Increment

– Decrement

– Rotate Right

13

variables

 myRRVar ror8 = 1

end variables

packet myPkt

 hex(0A 0B 0C 0D)

 myRRVar

 eop

end packet

Variables

 Used to define

packets with

dynamic data

 Referenced in

packet definition

 Types:

– Increment

– Decrement

– Rotate Right

– Rotate Left

14

variables

 myRLVar rol8 = 1

end variables

packet myPkt

 hex(0A 0B 0C 0D)

 myRLVar

 eop

end packet

Variables

 Used to define

packets with

dynamic data

 Referenced in

packet definition

 Types:

– Increment

– Decrement

– Rotate Right

– Rotate Left

– Random

15

variables

 myRandVar rnd = 0

end variables

packet myPkt

 hex(0A 0B 0C 0D)

 myRandVar

 eop

end packet

Packet Generation Schedules

 Send pre-defined

packets at specific

times

16

packet myPkt1

 hex(0A 0B 0C 0D)

 eop

end packet

...

schedule mySchedule

 send myPkt1

 send myPkt2

end schedule

Packet Generation Schedules

 Send pre-defined

packets at specific

times

 Specify the number

of times to send

packets

17

packet myPkt1

 hex(0A 0B 0C 0D)

 eop

end packet

...

schedule mySchedule

 send myPkt1 * 2

 send myPkt2

end schedule

Packet Generation Schedules

 Send pre-defined

packets at specific

times

 Specify the number

of times to send

packets

 Timing

– Relative to schedule

start

18

packet myPkt1

 hex(0A 0B 0C 0D)

 eop

end packet

...

schedule mySchedule

 5ms send myPkt1

 send myPkt2

end schedule

Packet Generation Schedules

 Send pre-defined

packets at specific

times

 Specify the number

of times to send

packets

 Timing

– Relative to schedule

start

– Relative to previous

packet

19

packet myPkt1

 hex(0A 0B 0C 0D)

 eop

end packet

...

schedule mySchedule

 5ms send myPkt1

 +5ms send myPkt2

end schedule

State Machine

 Controls the EGSE state

 One state machine per SpaceWire interface

 Consists of state definitions

20

State Machine

21

statemachine 1

 initial state myState1

 do mySchedule1 @ 20Mbps

 transition at end of schedule

 on myTimer goto myState2

 end state

 state myState2

 do mySchedule2 @ 50Mbps repeatedly

 transition at end of packet

 on myCounter goto myState1

 end state

end statemachine

State Machine

22

statemachine 1

 initial state myState1

 do mySchedule1 @ 20Mbps

 transition at end of schedule

 on myTimer goto myState2

 end state

 state myState2

 do mySchedule2 @ 50Mbps repeatedly

 transition at end of packet

 on myCounter goto myState1

 end state

end statemachine

State Machine

23

statemachine 1

 initial state myState1

 do mySchedule1 @ 20Mbps

 transition at end of schedule

 on myTimer goto myState2

 end state

 state myState2

 do mySchedule2 @ 50Mbps repeatedly

 transition at end of packet

 on myCounter goto myState1

 end state

end statemachine

 Each state has

– a schedule

State Machine

24

statemachine 1

 initial state myState1

 do mySchedule1 @ 20Mbps

 transition at end of schedule

 on myTimer goto myState2

 end state

 state myState2

 do mySchedule2 @ 50Mbps repeatedly

 transition at end of packet

 on myCounter goto myState1

 end state

end statemachine

 Each state has

– a schedule

– conditions under which to change state

State Machine

25

statemachine 1

 initial state myState1

 do mySchedule1 @ 20Mbps

 transition at end of schedule

 on myTimer goto myState2

 end state

 state myState2

 do mySchedule2 @ 50Mbps repeatedly

 transition at end of packet

 on myCounter goto myState1

 end state

end statemachine

 Each state has

– a schedule

– conditions under which to change state

– when to change state

Events

 State machines react to events, changing state and

therefore schedule

 Pre-defined events

– Include: Link started, link errors, time-code received and

packet generation events

 User defined events

26

Events

 State machine reacts to events, changing state and

therefore schedule

 Pre-defined events

– Include: Link started, link errors, time-code received and

packet generation events

 User defined events

– Timers

27

timers

 myTimer 10ms start on mySWEvent

end timers

Events

 State machine reacts to events, changing state and

therefore schedule

 Pre-defined events

– Include: Link started, link errors, time-code received and

packet generation events

 User defined events

– Timers

– Counters

28

counters

 myCounter 10 on myTrigIn1

end counters

Events

 State machine reacts to events, changing state and

therefore schedule

 Pre-defined events

– Include: Link started, link errors, time-code received and

packet generation events

 User defined events

– Timers

– Counters

– Software

29

software

 mySWEvent1 1

end software

Events

 State machine reacts to events, changing state and

therefore schedule

 Pre-defined events

– Include: Link started, link errors, time-code received and

packet generation events

 User defined events

– Timers

– Counters

– Software

– External triggers

30

triggers

 myTrigIn1 input 1 rising

 output high on myTimer

end software

SpaceWire EGSE Example 1

 Requirements

– Simulate an instrument sending house keeping

information, consisting of four pre-defined packets,

every two seconds at 200Mbps.

31

SpaceWire EGSE Example 1

32

SpaceWire EGSE Example 1

33

200Mhz

SpaceWire EGSE Example 1

34

200Mhz

2 seconds

SpaceWire EGSE Example 1

35

200Mhz

2 seconds

2 seconds

2 seconds

SpaceWire EGSE Example 2

 Requirements

– Simulate an instrument continuously sending packets in

both directions over a SpaceWire link at 350Mbps.

36

SpaceWire EGSE Example 2

37

SpaceWire EGSE Example 2

38

SpaceWire EGSE Capabilities

 Detailed packet definitions

– Via raw data, variables, automatic CRC and checksum

calculation

 Precise packet generation scheduling at specific

data rates.

 Packet generation control

– Via state machines and events

39

SpaceWire EGSE Key Benefits

 Mimic real-time behaviour of SpaceWire units

 Integrate with equipment via external triggers

 Minimal development time

40

SpaceWire EGSE Conclusion

 Hardware

 Software

 Scripting Language

 Capabilities and Benefits

 Release date: Q1 2012

41

